Extensions 1→N→G→Q→1 with N=C22×D5 and Q=C8

Direct product G=N×Q with N=C22×D5 and Q=C8
dρLabelID
D5×C22×C8160D5xC2^2xC8320,1408

Semidirect products G=N:Q with N=C22×D5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C22×D5)⋊1C8 = C53(C23⋊C8)φ: C8/C2C4 ⊆ Out C22×D580(C2^2xD5):1C8320,26
(C22×D5)⋊2C8 = C5⋊(C23⋊C8)φ: C8/C2C4 ⊆ Out C22×D580(C2^2xD5):2C8320,253
(C22×D5)⋊3C8 = D5×C22⋊C8φ: C8/C4C2 ⊆ Out C22×D580(C2^2xD5):3C8320,351
(C22×D5)⋊4C8 = C2×D101C8φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5):4C8320,735
(C22×D5)⋊5C8 = C2×D10⋊C8φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5):5C8320,1089
(C22×D5)⋊6C8 = D10.11M4(2)φ: C8/C4C2 ⊆ Out C22×D580(C2^2xD5):6C8320,1091
(C22×D5)⋊7C8 = C22×D5⋊C8φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5):7C8320,1587

Non-split extensions G=N.Q with N=C22×D5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C22×D5).1C8 = C8.25D20φ: C8/C2C4 ⊆ Out C22×D5804(C2^2xD5).1C8320,72
(C22×D5).2C8 = C20.10M4(2)φ: C8/C2C4 ⊆ Out C22×D5804(C2^2xD5).2C8320,229
(C22×D5).3C8 = D101C16φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5).3C8320,65
(C22×D5).4C8 = C2×C80⋊C2φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5).4C8320,527
(C22×D5).5C8 = D5×M5(2)φ: C8/C4C2 ⊆ Out C22×D5804(C2^2xD5).5C8320,533
(C22×D5).6C8 = D10⋊C16φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5).6C8320,225
(C22×D5).7C8 = C2×D5⋊C16φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5).7C8320,1051
(C22×D5).8C8 = C2×C8.F5φ: C8/C4C2 ⊆ Out C22×D5160(C2^2xD5).8C8320,1052
(C22×D5).9C8 = D5⋊M5(2)φ: C8/C4C2 ⊆ Out C22×D5804(C2^2xD5).9C8320,1053
(C22×D5).10C8 = D5×C2×C16φ: trivial image160(C2^2xD5).10C8320,526

׿
×
𝔽